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Multiple sources of radiation

The main source of radiation is the

point in the metal target onto which

the electron beam is focussed. This

point is referred to as the ‘focal spot’,

‘focus’ or ‘primary source’.

The shape of the field at the patient

is determined by the collimators,

consisting of the jaws and the multileaf

collimator (MLC). The MLC position

varies between manufacturers. For

Elekta, the MLC replaces the upper

jaws, as shown in figure 1. Siemens

uses the MLC to replace the lower

jaws, whilst Varian keeps both sets of

jaws and has the MLC below the lower

jaws. 

In machines with a flattening filter,

the scattered radiation from the filter

acts as the second largest source of

radiation. The primary collimator also

acts as a radiation source. Since these

components are close together in the

head, these can sometimes be

regarded as a single extended source.

Other structures in the head of the

machine (wedge, jaws, MLC) all

scatter radiation and contribute, to a

lesser extent, to the radiation coming

from the head.

The fact that radiation comes from

multiple sources influences the shape

of the penumbra; as shown in figure 2,

the width and position of a source

relative to the collimator determines

the geometric penumbra. 

MLC properties

The positions of the MLCs and jaws

need to be known by most algorithms

(with the possible exception of

measured beam models) to model the

geometric penumbra.

The shape of the collimating edge

also influences the shape of the

penumbra. This will differ between the

jaws, the MLC ends and the MLC sides.

The sides of the MLC have steps to

minimise leakage of radiation, known

as the ‘tongue and groove’, as shown
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Introduction

The aim of this tutorial is to give users

of treatment planning systems an

understanding of the algorithms they

are using. It will cover the algorithms

currently in common use in treatment

planning systems in the UK and will

include:

n dose calculation for megavoltage

photons;

n inverse planning and optimisation,

and

n dose calculation for charged

particles.

I will cover the generalities of each

algorithm, but not the precise

implementation by individual

manufacturers. 

Dose deposition in tissue is

dominated by charged particle

(electron) transport, from electrons

released in Compton and other

interactions. In a medium that is much

less dense than water, such as lung,

an electron travels much further

before losing its energy. This means

that the beam penumbra, measured in

a lung phantom, is wider than the

penumbra of the same beam

measured in a water phantom.

The world of treatment planning

algorithms can be divided into two,

known as ‘type b’ and ‘type a’,1 based

on whether or not the algorithm

knows about this basic bit of physics;

‘type b’ algorithms are the ones that

correctly model the penumbral

change with density, whilst ‘type a’

algorithms are the ones that do not.

Several commercial systems offer

a choice of algorithms, both of ‘type b’

(more accurate but potentially slow)

and of ‘type a’ (less accurate but

faster). Before covering the

algorithms, I will describe some of the

properties of linacs that need to be

modelled.

Properties of linacs than need

to be modelled

FIGURE 1. Schematic of typical linac head (not to scale)

FIGURE 2. Geometric penumbra
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in figure 3. A consequence of these

steps is that beam edges (defined by the

position of the 50 per cent) of two

nominally adjacent segments will not

align to the same edge. Planning

systems will vary as to how well they

model this. 

Photon interactions

A photon travels in a straight line until it

interacts with matter. For a

megavoltage photon in tissue or water,

the most likely interaction is Compton

scattering. The other two major

interactions are the photoelectric effect

(PE) and pair production (PP). All three

of these interactions involve transfer of

energy to a secondary electron, which

then deposits energy by ionisation as it

travels up to its maximum range. In

Compton and PE, there is also energy

given to a secondary or tertiary photon,

which will travel a greater distance

before possibly interacting to deliver

dose at a distance from the first

interaction. In PP, the positron deposits

dose by ionisation in a similar manner

to the electron, before annihilating with

an electron to produce two photons of

511 keV, which will contribute to the

dose at a distance from the first

interaction. 

Hence, a photon interaction leads to

dose being deposited over a range of

distances and directions, most locally

(within the range of the electrons

produced) and some at a greater

distance (due to secondary photons). 

Converting HU to density

The Hounsfield unit (HU) of a CT

scanner is generally defined as: 

where μ is the attenuation coefficient of

x-rays at the point of interest, and μw is

the attenuation coefficient of water. For

the kV x-rays usually used in CT

scanners, the Compton effect

dominates in low-Z materials such as

lung, fat and muscle, but a substantial

proportion of the attenuation is PE in

higher Z materials such as bone. In the

Compton region, μ is almost completely

proportional to ρe, the electron density

relative to water, giving rise to the solid

line in figure 4. For bone-like materials,

the presence of calcium leads to the

dashed line in figure 4.   

The slope of the solid line does not

vary with energy; however, the slope of

the dashed line varies between

scanners and between different kV

settings on the same scanner. 

For the density correction methods

generally used with ‘type a’ algorithms,

the density is required as a means of

correcting the attenuation in tissue

relative to that in water. Since for the MV

x-rays used in radiotherapy the

dominant attenuation process is

Compton scatter (even in bone),

conversion using figure 4 (or a similar

curve measured for your own scanner

with a phantom with inserts of known

electron density) is all that is required. A

decision has to be made as to where one

jumps from the solid blue line to the

dashed red line. Is a pixel with an HU of

150 a piece of dense low-Z material (in

which case  ρe = 1.15), or very low

density bone (in which case  ρe = 1.08)?

In practice there are very few biological

materials with HU between 100 and 260,

so pragmatically a decision can be made

to use the solid blue line below 100 HU

and the dashed red line above 100 HU.

However, some phantom materials

(especially Perspex with ρe = 1.16) can

give problems; this is why it is

sometimes necessary for a planning

system to have different HU to density

tables for phantoms and patients. 

Most of the ‘type b’ algorithms also

require the physical density (g cm−3). This

is harder to determine directly from the

CT. One approach is to measure a curve

similar to figure 4, with a phantom with

inserts of known physical density.

However, care needs to be taken to

ensure that the elemental composition

of your inserts mimics patient materials.

If it does not, you will have no better

results than if you had assumed that all

materials are effectively ‘dense water’.

Stoichiometric methods, which start by

assuming the elemental compositions

of different tissues, can be used to get a

more accurate conversion curve.

Some planning systems (e.g.

Pinnacle, TomoTherapy) use an HU to

physical density curve as their only HU

calibration curve. Tables of physical

density to attenuation coefficients are

used to get back to the answers they

would have got if they had used electron

density in the first place.

Monte Carlo

Anything that picks events from a

probability distribution using random

numbers is a Monte Carlo simulation. In
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FIGURE 3. Tongue and groove effect. The blue and red
profiles correspond to the profile when MLC leaves of the
same colour are closed. The green line is the summation of
the dose from two adjacent segments

FIGURE 4. The relationship between HU and
electron density
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the context of this tutorial, we will

restrict this to following the

interactions of photons and electrons.

In principle, this can be done by

knowing the cross sections of all the

interaction processes (PE, Compton,

PP etc.) for a continuum of energies in

a particular material. The cross section

data should also include information

regarding the angular distributions of

scattered particles. 

Using random numbers and

knowledge of the probability of

interactions occurring, one can

randomly select the distance a particle

travels to the next interaction, as well

as the type of interaction the particle

experiences. The primary photons

generate secondary photons and

electrons, which themselves undergo

the same process (including the

generation of tertiary particles and so

on) until all the energy is absorbed. The

process is then repeated for a large

enough number of primary particles

(histories) such that the result has an

acceptable level of statistical

uncertainty.

However, electrons have large cross

sections, making their mean free path

much shorter than photons. As a

result, far too many calculations are

needed to model electron paths;

approximations are used to make

calculations manageable. Different MC

codes make different assumptions to

increase speed. These approximations

mean that we are no longer being true

to the laws of physics. All algorithms

end up making some trade-offs

between speed and accuracy.

MC calculations are subject to

statistical uncertainty in dose,

proportional to 1/√N, where N is the

number of histories. As a result,

calculations need large numbers of

histories (in the order of 104 per voxel to

get down to an uncertainty of 1 per

cent).

The process of calculating the dose,

from linac to patient, is as follows:

1.  Start with an electron exiting from

waveguide.

2.  Follow it and its descendants

through targets, primary collimators,

ion chambers etc.

3.  Track it through patient-dependant

structures (jaws, MLC etc.).

4.  Track it through the patient (as

modelled from CT data set).

MC planning systems can speed up

the process by precalculating to the

end of step 2 and storing a phase-

space file. Several commercial

systems (e.g. Monaco, BrainLab and

RayStation) use code based on the

Voxel Monte Carlo (VMC)2, 3 code and

code derived from it, such as XVCM and

VMC++. Eclipse uses Macro Monte

Carlo (MMC)4 for electron calculations.

These codes give much faster

calculations than general purpose

Monte Carlo codes, at the price of

introducing a number of simplifying

approximations.

Where a general MC code such as

EGS4 or EGSnrc5 is designed to

describe electron transport in a wide

range of energies and materials, for

arbitrary geometries, VMC restricts

itself to electrons with a kinetic energy

of 1 to 30 MeV, and to low-Z materials

with densities of 0 to 3 kg m−3, and only

performs dose calculations in

rectangular geometries (as defined by

the patient CT image). VMC also uses a

simplified version of the distribution for

multiple scattering, and uses energy

cut-offs (typically 500 keV for electrons

and 50 keV for photons) to increase

speed. MMC speeds calculations by

transporting electrons in large-scale

macroscopic steps through the

absorber.

Most of the convolution/

superposition algorithms (described

later) use Monte Carlo calculations to

generate the kernels which describe

how the dose from a single photon

interaction is deposited in water.

Dose to water or dose to

tissue

For Monte Carlo algorithms and some

other ‘type b’ algorithms, a distinction

is made between ‘dose to water’  

and ‘dose to tissue’          . The subscript

‘med’ in both cases indicates that the

attenuation and scattering in the

medium is accounted for. ‘Dose to

tissue’ is the default result of a Monte

Carlo calculation that takes the energy

deposited in a small volume of tissue

and divides it by the mass of tissue in

the small volume to give the dose.

‘Dose to water’ is the dose that would

have been received by a small volume

of water located at the same point.

Conversion from ‘dose to tissue’ to

‘dose to water’ requires the application

of Bragg–Gray cavity theory, which

leads to the equation: 

where               is

the water to tissue ratio of mass

▼
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FIGURE 5. Stopping power ratio as a function of density

FIGURE 6. A 1D convolution

FIGURE 7. A 2D convolution

FIGURE 8. A 3D convolution

FIGURE 9. An error function (solid line) fitted to a measured
beam profile (points)
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collision stopping power, averaged

over the energy spectrum.              varies

with the density and elemental

composition of the tissue, and planning

systems will differ on how they

calculate this. For example, Monaco

has a set of 11 equations that attempt

to fit               as a function of density and

energy. Typical values of              (for a

spectrum of mean energy 2 MeV as a

function of density) are shown in figure

5.

For most tissues other than bone,

the value is within a few percent of

unity. However, for doses inside very

dense bones, the two doses differ by up

to 20 per cent.

There is still considerable debate

about whether to report dose to water

or dose to tissue.6 The argument in

favour of dose to water is that reference

dosimetry of linacs is based on codes

of practice that yield dose to water. The

argument for dose to tissue is that

since this is the quantity inherently

computed by the planning system, the

use of             adds additional

uncertainty, of a level that is possibly

greater than the correction to be made

in the first place. The discontinuities in

figure 5 at densities of 1.1 and 2.7 are

examples of these uncertainties. A

curve that is a function of mass density

cannot distinguish between two

materials (e.g. ICRU ‘bone’ and ICRP

‘bone’) with the same density but very

different elemental composition. 

Convolution and superposition

algorithms

Before covering the details of the

algorithms, I will quickly revise the

mathematics of convolution.

Convolution

In one dimension, the mathematical

definition of convolution is:

In discrete form, as used in computer

calculations, this becomes: 

Figure 6 demonstrates 1D

convolution. The first graph represents

some function f, comprising a ‘top hat’

function and three spikes of different

sizes. The second graph contains a

function g, which we will refer to as the

‘kernel’. The result of convolving them

is shown in the third graph. At the

position of each of the three spikes, one

gets a copy of the kernel, of a size

proportional to the size of the spike.

The ‘top hat’ has its edges blurred, with

the width of the blurred edge

depending on the width of the kernel.

An appropriate method of

normalisation will be needed if the

area under the kernel is not unity.

In 2D, convolution becomes: 

(The reader can supply the

corresponding discrete form.)

Figure 7 gives an example of a 2D

convolution.

In 3D, convolution becomes:

which is illustrated in figure 8.

Figures 7 and 8 may suggest

examples in radiotherapy dose

calculations; we will return to these

later.

A particularly interesting 1D

example is the convolution of a step

function (stepping from zero to unity at

x = 0) and a Gaussian (bell curve):

When a step function and a

Gaussian are convolved, the result is a

function known as an ‘error function’,

erf(x):

Figure 9 shows the shape of an

error function (pink line) plotted for σ =

0.34 cm.

The distance from the 0.2 to 0.8

value of an error function is 1.68σ. The

value of σ in figure 9 was chosen to

match the 20–80 per cent dose

distribution for a measured beam (6

MV x-rays, 5 cm deep), shown as the

blue points in the same figure. It is

clear that although there is some

similarity between the points and the

line, agreement is not good; an error

function is only a poor approximation to

a beam edge profile. Radiation comes

from more than one source; there is

transmission through collimators and

long-range scatter.

Figure 10, which shows improved

agreement, was calculated by adding

together an erf with a sigma of 0.3 cm,

together with a 10 per cent weighted

erf with a sigma of  1.0 cm, plus a

constant of 3 per cent. The resulting

sum (normalised back to 1.0) gives

much closer agreement with

measured data. These numbers are

the result of curve fitting to the

measured data, rather than from any

fundamental principles. This reflects

the situation in many planning systems

where the beam modelling process

involves playing with parameters until

a good fit is found.

The size of the Gaussian from each

source depends not only on the

geometrical penumbra from the

source but also on radiation transport

in the patient or phantom. The

secondary electrons released in

Compton and other interactions travel

some distance whilst depositing their

energy; the lateral component of the

electron range serves to widen the

penumbra. The σ from each source is

made up of a geometrical penumbra

σgeom combined in quadrature with a

radiation penumbra σradn:

The geometrical penumbra is

independent of the density of the

phantom. However, the radiation

penumbra varies inversely with density

(or more strictly with relative electron

density), since at lower densities the

electrons travel further.

Typical values might be σgeom =

0.26 cm, σradn = 0.15 cm, combining to

give 0.3 cm in water.

In lung of relative density 0.3, σradn
= 0.15/0.3 = 0.5 cm. This combines in

quadrature with σgeom to give σ = 0.56

cm. 

Hence, the overall penumbra in

lung is about twice as wide as it is in

water. The ‘type b’ algorithms correctly

model this, whilst the ‘type a’

algorithms assume that σradn is not

changed by changes in density.

Point kernel methods

Since the average energy required to

produce an ion pair is approximately 35

eV, and the energy transferred to an

electron in a photon interaction will be

of the order of MeV, it will be seen that

there are tens of thousands of electron

interactions to each photon interaction.

Practically all of the dose that is

deposited is from ionisation by

electrons. When considering the dose

deposited per photon interaction in the

primary beam, it is also ‰
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necessary to consider the long-range

dose deposition from secondary

photons (which will themselves

transfer energy to electrons when they

interact with matter).

Unlike in dosimetry, where KERMA

(kinetic energy released per unit mass)

is used, in treatment planning

algorithms it is more common to use

TERMA (total energy released per unit

mass). KERMA considers the energy

transferred to electrons, and excludes

the energy given to secondary photons.

TERMA includes all the energy

removed from the primary beam.

The calculation of TERMA in a

patient requires the following:

n The attenuation coefficient μ for

each point in the patient. This will

depend on:

–  the energy spectrum of the radiation,

– the electron density at each point

(which can be calculated from the CT

values). 

n Strictly, the physical density is also

required (since TERMA is proportional

to μ/ρ). Some vendors assume that

tissue is scaled water.

n Geometrical penumbra; this is

accounted for by convolving with one or

more Gaussians.

In a real heterogeneous patient, the

TERMA calculation requires the

algorithm to integrate the electron

density to give the radiological path

length to the calculation point.

‘Point kernels’ derived from Monte

Carlo calculations describe how the

dose from a single photon interaction

is deposited in water. Some vendors fit

analytical functions to the Monte Carlo

derived data, such as the function

described by Ahnesjo:7 

(1)

where A, a, B and b are functions of

angle, tabulated for a number of

energies. The first term relates mainly

to primary dose (short range), the

second mainly to scattered photons

(long range). Some systems

implement these as two separate

convolutions using two different grid

spacings (figure 11).

To calculate dose in an

homogenous medium, TERMA is

convolved with the kernel D = T � K.

To create a beam model that agrees

with measured data, there are a

number of parameters to play with,

including the following:

n Spectrum: on axis and off axis. 

▼
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n Primary beam profile: derived from

in-air or from shallow profile for large

field.

n Gaussians sigmas for geometrical

penumbra.

n Electron contamination: to get the

initial few mm of the PDD correct.

Providing one is doing a true

convolution (i.e. with a spatially invariant

kernel), one can make calculations

much faster by the use of Fast Fourier

Transform (FFT) methods:

Hence:  

Multiplying is much faster than

convolving. A 1D convolution of two

arrays of length N will require N2

calculations. In 3D, this becomes N6.

FFT is of the order of N log2(N) in 1D, and

N3log2(N) in 3D. 

For example, for N = 256, N6 = 2.8 ×

1014 and N3 log2(N) = 1.3 × 108 (a million

times less).

It will be seen from these equations

that FFT convolution requires an

invariant kernel. In other words, the

width of the kernels used to blur the

dose distribution does not vary with

position. This approximation is fine in a

water tank. However, in a patient the

width of the kernel will increase as

density decreases, and vice versa. This

means that algorithms that rely on FFT

convolutions cannot model the variation

of penumbra with density.

Superposition

In a ‘type b’ algorithm, the shape of the

kernel depends on the densities

between the interaction point and the

dose calculation point. Therefore, we no

longer have a true convolution so it

cannot be computed in Fourier space.

Even in a water tank, the kernel is not

truly invariant as the kernels should

really be ‘tilted’ to follow the divergence

of the beam; this issue can lead to

differences at the edge of large fields. If

one is performing an operation similar

to convolution, but with a kernel that

varies with position, one is no longer

performing a convolution; one is instead

performing a superposition. This has a

major impact on calculation speeds.

FFT is much faster than brute force

convolution, but only works for an

invariant kernel. This is part of the

reason why ‘type a’ algorithms are faster

than ‘type b’ algorithms.

FIGURE 10. The points are as in figure 9. The line is the sum
of two error functions and a constant

FIGURE 11. The kernel from equation 1. Note the scales of
the two parts of the figure; the second part is a
magnification of the centre of the first

FIGURE 12. Collapsed cone from Ahjesjo7
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Collapsed cone algorithm

The solution to this dilemma, which is

used by a number of planning systems,

is the collapsed cone algorithm. This is

illustrated in figure 12. 

n Divide the space around a point into

a series of cones.

n Assume that all energy released in

the cone is transported and deposited

along the axis.

n Calculation time is of the order of M

N3 where M is the number of cones

considered at each point.

When commissioning a planning

system that uses collapsed cone, there

are several questions you should ask.

How many rays do they use? (More rays

means more accurate but slower.) Do

they tilt the kernel? (Not all of them do.)

How are they modelling the TERMA?

The answers to the questions will help

you understand the strengths and

weaknesses of the implementation,

and make testing the system easier.

Pencil kernel models

If a convolution is done in 2D, as shown

in figure 7, the 2D kernel can be

referred to as a ‘pencil kernel’, which is

a 2D version of the point kernel

described above. The kernel varies

with depth, but is usually invariant

within a plane. This makes it a ‘type a’

algorithm and it can be calculated

using FFT convolution, giving the so-

called ‘pencil beam models’.  It is also

possible to have pencil kernels scaled

within a plane, giving a ‘type b’

algorithm.

Anisotropic analytical

algorithm (AAA)

This algorithm is ‘anisotropic’, i.e. it is a

‘type b’ algorithm, and ‘analytical’ – it

uses an analytical method, not FFT.

Essentially, it is a combination of a

triple Gaussian pencil beam model

with a 1D depth scatter kernel model.

Lateral density scaling is applied to the

pencil beams. The 1D depth scatter

kernel is scaled for local density. It

utilises a multisource model: primary,

extra-focal, electron contamination

and wedge.

The pencil beam is modelled as a

superposition of Gaussian sources.

The convolution of a Gaussian with a

step function is an error function (see

the section on convolution above), so

the algorithm analytically

superimposes lots of scaled error

functions.

Solution of the linear

Boltzmann transport equation

The most recent class of ‘type b’

algorithms to make it into a

commercial system are based on

solutions of the linear Boltzmann

transport equation (LBTE). This method

is the basis of the Accuros algorithm in

Eclipse. The Boltzmann transport

equation (BTE) describes the behaviour

of photons and particles as they pass

through and interact with matter. The

non-linear form of the equation can

model interactions between charged

particles (e.g. Coulomb repulsion of

electrons) whilst the linear form

assumes that particles only interact

with the matter they are passing

through. The implementation in

Accuros solves a time-independent

three-dimensional system of coupled

Boltzmann transport equations with

the aim of modelling the distribution of

angular photon and electron fluence

within a patient. The equations include

terms which describe photon and

electron scattering, production and

attenuation (specifically, electron

attenuation based on stopping powers). 

Unlike Monte Carlo, which uses

random numbers to follow histories,

Accuros uses numerical methods to

explicitly solve the LBTE. In principal,

both Monte Carlo and LBTE methods

would converge to the same answer if

all computational approximations were

removed (and enough time allowed for

calculation), since they would both be

limited by the same uncertainties

inherent in the cross-section data. In

practice, both methods use

approximations to speed up

calculations, so neither is exact. LBTE

is more prone to systematic errors

from the fact that a continuously

variable function is cut up into discrete

steps of position, energy and angle,

whilst Monte Carlo is more prone to

random errors from insufficient

numbers of histories being used, and

also suffers from some discretisation

errors. The implementation in Eclipse

uses the same multiple source model

as AAA to simplify the configuration

process for users that have already

implemented AAA.

One interesting feature of the LBTE

algorithm is that the calculation time is

virtually independent of the number of

beams being calculated. This means

that it will appear slow when used to

calculate a single beam, but fast when

being used to calculate a complex

VMAT plan.

Measured beam models

When measuring beam data to enter

into a planning system, a large

proportion of the data is measured on

the central axis. Readers who wish to

have a good understanding of  central

axis dose calculation should read the

appendices of BJR supplement 25.8

The required data include the

following:

n Output factors with and without

phantom scatter (any two out of

Sc,Sp,Spc).

n Some sort of depth dose data (PDD,

TMR, TPR, TAR, etc). 

n Data on absorbers (wedges, trays,

etc.).

The extent to which your planning

system will use this data depends on

the dose calculation models used:

n Measured beam data systems will

use the data in the calculation; the

algorithms will interpolate into output

and depth dose data by equivalent

square and depth. Whilst measured

beam models have been superseded

in commercial planning systems, they

are still in use in some check systems,

(commercial and in-house) because

they are relatively simple to

implement.

n Pencil beam models use nearly all

of the data. Central axis data will be

used directly, whilst profile data will be

used to check the models.

n Convolution/superposition models

will use some of the data to check the

models, and some of it (especially the

output data) to normalise predictions

back to reality at a number of field

sizes.

n Monte Carlo models shouldn’t need

to use the data (other than to

normalise the dose per MU for the

reference field size), but you will want

to use them to check your results.

Measured beam data is usually

measured in water tanks. 

Whilst the dose on the central axis

can be characterised with relatively

few measurements, with simple

means of interpolating between

measurements, the beam profiles

(dose off-axis) are more complex.

Figure 13 shows the problem.

The problem of how to interpolate

between depths was solved in 1974 by

Milan and Bentley,9 who normalised

each curve on the central axis and
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plotted each curve as a function of angle from the

central axis. Figure 14 illustrates this. It is now

straightforward to interpolate between depths.

The algorithm originally specified measuring

on 47 fan lines at five depths. This was designed to

keep the memory requirements low, in the days

when computers had only a few kB of memory.

Since this is no longer a limitation, modern

implementations of this algorithm can use more

depths and points, limited only by your willingness

to measure the data in a plotting tank.

If you test your planning system by looking at

how well it reproduces the measured data, these

models will appear to be excellent. However for

irregular fields, especially those defined with

MLC, and for situations with loss of scatter such

as tangential fields, these algorithms show

severe limitations.
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FIGURE 13. Beam profiles for a 15 cm-wide beam of 6 MV    x-rays, at 100 cm SSD, shown at depths
from 16–300 mm

FIGURE 14. The data of figure 13, where the distance in mm has been replaced by angle from central
axis in milli-radians
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